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Review of Zemankovics et al.

Gamma oscillations (~30-90 Hz) in the
local field potential (LFP) are a wide-
spread signature of information process-
ing in neural circuits and have been linked
to cognitive functions ranging from sen-
sory perception and attention to memory
encoding and the organization of neuro-
nal assemblies (Engel et al., 2001; Buzsaki
and Wang, 2012). Special emphasis has
been placed on the gamma-band phase-
synchronization among different brain
areas, which has been proposed as a mech-
anism to bind together information pro-
cessed in distant regions into a unified
representation (Engel et al., 2001) or to
coordinate different networks engaged in
a common memory task (Montgomery
and Buzsaki, 2007).

Despite intensive study, the cellular
mechanisms and functional roles of
gamma oscillations and synchronization
remain unclear in most cases (Buzsaki and
Wang, 2012). In the case of LFP oscilla-
tions, there are two main questions to be
answered: (1) what currents generate the
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LFP, and (2) what network interactions
coordinate the rhythmic activity? Both
questions must be addressed to gain a
proper understanding of the physiological
mechanisms of gamma-band LFP oscilla-
tions. For example, does a particular
gamma signal reflect the rhythmic activa-
tion of afferent synapses, or does it emerge
as a result of local circuit computations
(or both)?

An extensively studied example of
gamma oscillations are those recorded in
the rodent hippocampal CA1 area, which
are dynamically organized within ongoing
theta oscillations during active explora-
tion and rapid eye movement (REM)
sleep. Different origins and mechanisms
have been proposed for these oscillations,
including excitatory inputs from area CA3
and entorhinal cortex (EC), as well as lo-
cally coordinated inhibitory perisomatic
currents (Csicsvari et al., 2003). There are
likely to be multiple processes at play, es-
pecially given the different characteristics
of LFPs and spiking occurring at different
phases of the theta cycle within the same
region (Colgin et al., 2009; Belluscio et al.,
2012).

Cholinergic agonists such as carbachol
(CCh) have been shown to induce oscilla-
tions in CA3 in hippocampal slices resem-
bling in vivo gamma oscillations (Fisahn
etal., 1998). How these oscillations prop-
agate to target regions is not fully under-
stood, and this was the focus of a study by
Zemankovics and collaborators (2013) .
Working with mouse hippocampal slices,

they found that CA1 LFPs during CCh-
induced oscillations primarily reflect peri-
somatic inhibitory currents onto CAl
pyramidal cells (PCs) driven by rhythmic
excitatory input from CA3 PCs onto CAl
interneurons. Firing of CAl interneurons
was strongly modulated by phasic CA3 ex-
citation, but CAl pyramidal cells were
only weakly modulated. Furthermore, the
PCs tended to fire at an earlier phase of the
oscillation, shortly before the incoming
excitation from CA3. So what controls the
firing of CA1 PCs? In contrast with in-
terneurons, the dominant phasic currents
in PCs were inhibitory. Moreover, the
preferred firing phase of PCs aligned with
that of interneurons after infusion of
gabazine (a GABA, blocker) into CAl
stratum pyramidale. These data suggest
that phasic input from CA3 excites both
CAl PCs and interneurons, but because
interneurons have lower spike thresholds
and more electrotonically compact den-
drites than PCs, they respond more
quickly and reliably to the CA3 input and
suppress the concurrent excitation of CA1
PCs. PCs are therefore most likely to fire at
the point in the cycle at which they are
least inhibited, shortly before (~6 ms) the
interneurons fire maximally.

These results can be incorporated into
various models of hippocampal function
that emphasize the role of oscillations me-
diating input integration and cell assem-
bly formation (Buzsaki, 2010). Rather
than directly entraining CA1 PCs, CA3
gamma oscillations may recruit feedfor-
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ward inhibition to create temporal win-
dows of opportunity for CA1 PCs to fire.
Longer time scale mechanisms, such as
NMDA-mediated currents and dendritic
calcium events, could conceivably aid in
this process, as well as engage synaptic
plasticity mechanisms to modify the net-
work at the levels of both afferent CA3
terminals and the local interneuron plexus
(Spruston, 2008). By engaging local in-
terneurons in another layer of com-
putation to selectively activate discrete
assemblies of PCs, gamma oscillations
may thus enhance the information pro-
cessing capabilities of CA1 (Csicsvari et
al., 2003; Buzsaki and Wang, 2010). Fur-
thermore, the temporal clustering of CA1
PC spikes may increase the efficacy of the
activated assemblies on their downstream
targets (Buzsaki, 2010).

The key question, as always, is how
these in vitro findings relate to in vivo ac-
tivity in the behaving animal. LFPs are no-
toriously difficult to interpret; they are a
complex mixture of synaptic inputs and
local activity in the recorded region, and
they can be strongly distorted by volume
conduction. In the case of gamma-band
signals at the CA1 pyramidal layer, periso-
matic synaptic currents onto CAl PCs,
passive return currents from dendritic
synapses, volume-conducted potentials
(especially from very strong gamma cur-
rents originating in the dentate gyrus),
and spectral contamination from syn-
chronized action potentials (Belluscio et
al,, 2012) can all generate substantial
power at gamma frequencies in the same
location. Differentiating these influences
is both a challenge and a necessary step for
understanding the origin and function of
gamma oscillations.

The observation by Zemankovics et al.
(2013) that the interneurons recruited by
the gamma input can effectively suppress
the CA3 excitation of most CA1 PCs is con-
sistent with the reduced PC firing dur-
ing the theta phases of maximal EC and
CA3 input while the animal is running
(Mizuseki et al., 2009). Indeed, it has been
shown that CA3 input directly evokes
CAl PC spikes in a sparse manner
(Fernandez-Ruiz et al., 2012). Zemankov-
icsetal. (2013) propose that the weak cou-
pling between CA1 PCs and CA3 gamma
oscillations might enable CA1 cells to re-
spond efficiently to excitatory input from
the EC. The properly timed combination
of excitation from the Schaffer collaterals
(CA3) and the temporo-ammonic path-
way (EC) has been shown to evoke active
dendritic currents in PCs, boosting and
prolonging the impact of synaptic poten-

tials at the cell somata (Takahashi and
Magee, 2009). Such slow dendritic plateau
potentials may also allow PC assemblies to
be organized and timed by local network
mechanisms. It is plausible that several
multiplexed mechanisms coexist in vivo
for information transfer between these re-
gions, subject to the behavioral state and
processing demands.

One caveat to the Zemankovics et al.
(2013) conclusions is the unknown similar-
ity of CCh-induced gamma activity to the
endogenous gamma activity occurring in
behaving animals. Various gamma-band
patterns have been reported in the hip-
pocampus in vivo depending on behavior
(Montgomery and Buzsaki, 2007; Belluscio
etal., 2012), and in vitro, depending on the
activated receptors (Palhalmi et al., 2004).
For the CA1 gamma LFPs induced by CA3
input, itis likely that similar mechanisms are
involved in both cases, but this remains to
be carefully examined, and it is unclear
which mechanisms may dominate during
natural brain activity when simultaneous
activation of multiple inputs is present.
For instance, Palhalmi et al. (2004) hy-
pothesized that differences in spectral
and pharmacological characteristics of
cholinergically-induced gamma and meta-
botrobic glutamate receptor-induced gamma
in CA3 may be explained by differences in
interneuron participation. This could plau-
sibly be the case in CA1 as well, depending
on the response of the CA1 network to the
spatiotemporal motif of CA3 input. Fur-
thermore, EC input activates a different
subset of interneurons (Klausberger and So-
mogyi, 2008) and may therefore engage dif-
ferent mechanisms.

Finally, Zemankovics et al. (2013) could
not further differentiate the roles of several
subclasses of interneurons, such as basket,
axo-axonic (chandelier), or bistratified cells,
all of which fell under the PV+ category.
Bistratified cells are the most strongly mod-
ulated by in vivo gamma oscillations in CA1
of anesthetized rats (Tukker et al., 2007),
and CCK+ interneurons have recently been
implicated in underlying strong feedfor-
ward inhibition from CA3 to CA1 (Basu et
al., 2013). Although these dendrite-targe-
ting interneurons are surely important for
regulating the excitation of PCs, they might
be less effective at precisely controlling spike
timing compared with perisomatically tar-
geting interneurons (Royer et al,, 2012). In
addition, they have characteristically differ-
ent firing patterns during theta, gamma,
sharp wave-ripples, etc. (Klausberger and
Somogyi, 2008), and different hypothesized
roles in modulating the gain and timing of
PCs. Thus, further in vitro and in vivo exper-
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iments using techniques that can identify in-
terneuron subtypes are needed to clarify
their functional role during hippocampal
computations.

The literature has defined gamma
oscillations over a wide spectral band
(sometimes inconsistently). It is likely
that different activity patterns are spec-
trally overlapped, spatially intermingled,
and temporally coordinated by concur-
rent rhythms in a state-dependent man-
ner. Lumping these different patterns
together into a generic “gamma oscilla-
tion” may obscure their roles in the pre-
cise organization of the hippocampal
network and impede efforts to under-
stand the underlying cellular mecha-
nisms. In future work, it will therefore be
important to dissect the different network
phenomena contributing to gamma-band
LFPs in a given region. Appropriate spa-
tiotemporal sampling of LFPs and unit ac-
tivity in different behavioral conditions,
as well as accurate analytical tools for
studying their ongoing dynamics, is nec-
essary. Understanding the roles of the
diverse array of local interneurons in me-
diating these complex interactions is one
of the most exciting lines of research cur-
rently underway in systems neuroscience,
and further efforts toward this end will
surely continue to uncover the breath-
taking sophistication of network process-
ing in cortical circuits. The work by
Zemankovics et al. (2013) is an important
step in this direction.
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